Total No. of Pages: 4

Seat No.

T.E. (Civil) (Part - III) (Semester - V) Examination, May - 2016 WATER RESOURCES ENGINEERING-I (Old)

Sub. Code: 45538

Day and Date: Monday, 02 - 05 - 2016

Total Marks: 100

Time: 10.30 a.m. to 01.30 p.m.

Instructions:

- 1) Attempt any three questions from each section.
- 2) Figures to the right indicate full marks.
- 3) Assume any other suitable data, if required.

SECTION - I

- **Q1)** a) Differentiate between the intensity of rainfall and annual rainfall average. Explain the Thissen polygon method for computing the average annual rainfall over a catchment.
 - b) List out the essential requisites for the formation of clouds and precipitation, Enlist the different forms of precipitation.
 - c) Enumerate the different methods of measuring stream discharge.

 $[3\times 6=18]$

- Q2) a) Allowing 10 % error in establishing the mean rainfall data, calculate the minimum number of additional stations required over existing 7 number of rain gauges to represent the basin adequately. The annual rainfall data for stations are 62, 94, 62,47,32,88 and 70 cm respectively.
 - b) What is meant by design flood and what is its importance? Enumerate the various methods which can be used for estimating design flood discharge from a certain catchment and discuss any one of these methods in detail.

 $[2\times8=16]$

- **Q3)** a) What is rainfall hyetograph? How it is derived from a given rainfall mass curve? Also define the term 'phi index' and how it is determined from rainfall hyetograph.
 - b) Briefly describe any method by which you can measure the evaporation loss from a free water surface. Also explain any two methods of reducing the evaporation loss from a free water surface.

 $[2 \times 8 = 16]$

- Q4) a) Describe methods of separating the baseflow from a total runoff hydrograph.[6]
 - b) The ordinates of a 3 hr UH of a catchment are given below.

Time (hr)	0	3	6	9	12	15	18	21
3 hr UHO (m³/s)	0	10	20	16	12	8	4	0

Derive flood hydrograph at the catchment outlet due to a storm given below. Assume phi index 3 mm/hr and a constant baseflow 10 m³/s

Time from start of storm (hr)	0	3	6	9
Accumulated rainfall (cm)	0	3.9	4.7	7.6

[10]

SECTION - II

Q5) a) Explain the following terms -

[6]

- i) Storage coefficient
- ii) Coefficient of transmissibility
- iii) Perched Aquifer
- b) A 30 cm diameter well penetrates 25 m. below the static water table. After 24 hours of pumping @5400/litres per minute, the water level in a test well at 90 m. is lowered by 0.53 m., and in a well 30 m away the drawdown is 1.11 m. [10]
 - i) What is the transmissibility of the aquifer?
 - ii) Also determine the drawdown in the main well.

- Q6) a) Explain Drip method of irrigation and its components in detail. Explain under what conditions it is preferred and state its advantages and disadvantages.
 - b) Distinguish clearly between the following with neat sketches
 - i) Direct Irrigation scheme
 - ii) Storage irrigation scheme

Q7) a) Explain following-

[4]

- i) G.C.A. and C.C.A.
- ii) Rabi and Kharif crops
- b) After how many days will you supply water to soil in order to ensure sufficient irrigation of the given crop, if [6]
 - i) Field capacity of soil = 28%
 - ii) Permanent wilting point = 13%
 - iii) Dry density of soil = 1.3 gm/cc
 - iv) Effective depth of root zone = 70 cm
 - v) Daily consumptive use of water for the given crop = 12 mm
 - vi) Readily available moisture = 80% of available moisture
- c) The culturable commanded area for a reservoir is 60,000 hectares. Find out the reservoir capacity if canal losses are 7.5%, reservoir losses 10.5% and other data are given as follows: [8]

Crop	Base Period in	Duty in	Intensity of irrigation as	
	days	hectares/cumec		
			percentage	
Rice	130	1000	10	
Wheat	120	2400	15	
Cotton	180	1800	12	
Sugarcane	360	3000	18	

- Q8) a) Draw a neat sketch of a typical lift irrigation scheme. Name the various components in the scheme. Give design formulae for designing the different components of the lift irrigation scheme.[8]
 - b) Explain the importance of soil conservation measures. Write short notes on contour bunds and graded bunds adopted for soil conservation. [8]

